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NOTE

On Fast Direct Poisson Solver, INF-SUP Constant and lterative
Stokes Solver by Legendre—Galerkin Method*

1. INTRODUCTION

In a sequence of recent works {12, 11], we have presenied
efficient direct solvers, based on the Legendre— and Chebyshev-
Galerkin methods, for the sccond- and fourth-order clliptic
equations with constant coelficients. The compiexily of these
direet solvers is a small multiple of N where = 2 or 3
and N is the cutol T namiber of the polynomial expansion in
cach direction. These ditect solvers were all based on the matrix
decomposition method and, henge, did not take (ull advantage
of the special structures of the matrices obtained from the
Legendre—Galerkin discretization. We shail see that in the two-
dimensional case, more efficient algorithms can be constructed
by further exploring the matrix structures.

As the title suggests, the aim of this note is twofold: (1) we
shall present a fast direct 2D Poisson solver, based on the
Legendre—Galerkin approximation, whose complexity is of or-
der O(N* log; N} (where N is the cutol[T mumber of the Legendre
expansion in each direction); (i) we shall study numerically
the asymptotic behavior of the inf-sup constants for a sequence
of the discretized Stokes systems. Our results indicate in partic-
ular that the iterative Stokes solver, more precisely the conju-
gate gradient Yzawa aigorithm, has a complexity of order
O(N*2 log, N) for a sequence of discretized 2D Stokes

" systems. Since the convergence rate of the Legendre—Galerkin
approximations is exponential for problems with smooth solu-
tions, the algorithms presented below should be very competi-
tive for the specified problems.

2. FAST DIRECT POISSON SOLVER

Let £ = =1, 12 and 7,(x) be the pth-degree ependre
polynomial. We denote

Sy = span{L (0L (v): i = 0.1, ., N},
XN = {U = SN: Uln”: 0}’

Then the standard Legendre—Galerkin approximation to the
two-dimenstonal Helmholtz equation
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ot~ An=f i, ulp=0 (2.H
is to find uy € Xy such that
CE(HN,U) +(VHN.VU) =(f,U),VUEXN, (2‘2)

where (v, v) = f“ uv dy ¢y is the scalar product in L3({)).
It is casy to verily that {see Lemma 2.1 in [12])

Xy = span{d(x)(y):i, i =0, 1, ., N — 2},

where () = (1/V4k+ 6) (L") — Lia()). Furthermore,

selling

=] HWg @ b= [ g0 dx,

then we have

I, k=j
a, = .
N0, k)
2 2
ol —— + . k=]
“C’(2j+ e 5) /
by=hy= 2 . , 2.3
Gk r k=j+2
0, otherwise,
where O = (V4L - 6),
Let us now denote
N-2
ty = k_En b (DG (y) iy = (f OB (¥)
q=

and

U=ty hg=or.n-2  F= Uyhg=n.n-2,

B = (bydjeot. n-2-
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Then taking v = ¢ (x), (¥)in (22 forl,m=0,1..,N — 2,
we find that (2.2) is equivalent to the following matrix equation:

aBUB + UB + BU=F, (2.4)

which can also be written in the tensor product form

(*BRB+IRB+BRNu=f, (2.5)
where f and u are respectively F and U written in the form of
a column vector; i.e.,
f= (fm,ﬁo, oey _ﬁw;ﬁ}] ..,,f;.;; ...;fgq, ...,‘)(;Iq)-r, (2.6)
where ¢ = N — 2 and @ denotes the tensor product of matrices,
Le, A® B = (Ab;), j=¢,._.,. Note that we generally use a capital
letter to denote a matrix and a boldface letter to denote a vector.
Since B has alternating zero and nonzero elements, the system
(2.5) can be split into four subsystems. Namely, Let I'" (resp.
1) be the identity matrix of order [N/2] (resp. [N/2] — 1); let

i n_
by’ = byy;, B = (bE}))i,jco,l....,[Nm,

b?f’ = b2i—1.2;'f1 > B® = (b5})):'.;:0,1..‘.‘1:\1/21—1-
Thanks to (2.3), B" and B® are both symmetric tridiagonal
matrices. Let v, u'?, u®?, and u® (resp. foo), fiee) floe),
and f©9) consist of respectively the even-even, even—odd,
odd—even, and odd-odd components of U (resp. ). Then the
four subsystems are
(@BO@ B + [NQ BY + B [Wyyed = flee)
(@BO® BO + [V ® B + BO @ [V)yler) = feo,
(@BY® BY + [¥® BI + BO @ [J)yeeo = oo,
(@aBPQ B4 [I® BY 4 AR [y = floo),

2.7

1t is now clear that the matrices of the four subsystems are in
fact block-tridiagonal. Furthermore, in case o = 0, they have
exactly the same structure as the matrix generated by the stan-
dard five-point finite difference discretization to separable sec-
ond-order elliptic equations with variable coefficients (cf. [14]).
Hence in particular the four subsystems can be solved by the
extended cyclic reduction method developed by Swarztrauber
[14] in O(N* log; N} operations. In fact, the subroutine blktri.f
in FISHPACK (written by J. Adams, P. N. Swarztrauber, and
R. Sweet, available via netlib} can be directly used to solve
the above subsystems.

Remark 1. 1n case o # 0, each of the systems (2.7) corre-
spond to a block-tridiagonal matrix in which each block is a
tnidiagonal matrix. Hence blkiri.f cannot be directly used in
this case. However, we note that (see (2.18) in [14]) the structure
of the systems with « £ 0 is exactly the same as that of the
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systems obtained after one cyclic reduction to the systems with
o = 0. Therefore the systems (2.7) with a # 0 can still be
solved in O(N? log,N) operations.

We now compare in Table [ the efficiency of the above
cyclic reduction algorithm (denoted by the first solver), whose
operation count is about 32N* log, N — 11N? (cf. Section 4 in
[14]), with the direct Poisson solver (denoted by the second
sofver}, based on the matrix decomposition method presented
in [12}, whose operation count is about 2¥?* {cf. Section 2.2 in
112]). Note that only the CPU time in seconds for solving the
system (2.4) is reported. The preprocessing CPU time in sec-
onds is reported in parentheses. All the computations here and
later are performed on a Sun Sparc-10 workstation in double
precision, except the case N = 32 below for which the computa-
tion is done on a Sun Sparc-1* to highlight the comparison.

One conclades from Table 1 that for N £ 80 the direct solver
in [12] is more efficient than the present direct solver; and that
for N > 80 the latter becomes more efficient.

3. INF-SUP CONSTANT AND ITERATIVE
STOKES SOLVER

We shall take advantage of the fast Poisson solver developed
above to construct an efficient algorithm for solving the 2D
Stokes equations:

—-Au+Vp=1f V-u=0, inQl=[-1,1},

ulan = 0. jnpdxd,v:& {3.1)

We shall consider a sequence (m = N, N — |, N — 2, .)of
Legendre—-Galerkin approximations for (3.13 Find (.,
Pum) € Xy X 8, N L3(Q) such that

Vuy,,, V) = (V-v, Py )= v), VvEX,:

(V-u,,.91=0, ¥Yge5,NLD, (32)

where Xy = Xy X Xyand L) = {g € L) [ g dxdy = O}

Remark 2. The case m = N was first studied in (3] in the
context of the collocation method. The case m = N — | was
first used [2] in the context of the collocation method on stag-
gered grids. The case m = N — 2 was first introduced in []3]
in the context of the tau method and in [10] in the context of
the spectral element method.

1t is well known that (3.2) admits a unique solution if and
only if the set

Zym =g ES, NLED: (V- -u,9) =0, VuEX,)

is reduced to {0}. However, the tollowing results are now well
known (see, for instance, [3]).
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TABLE I

CPU Comparison of Two Direct Poisson Solvers

N 320 64 128 160 236
Ist solver 0.12(0.07) 0.11(0.04) 0.18(0.07) 0.55¢0.14) 0.88(0.22) 2.78(0.54)
2nd solver (.06(0.04) 0.090.05) 4.17¢0.09 (1.99(0.38) 1.33(0.72) 763(2.64)

* Sun Sparc-1* is used in this case.

LemMma 1.

Znx = span{L(x), Li( ¥), Lu{x)Ln(y),
L)Ly ), Ly ()L g (y),
Ly (Ly () L (OLL (9
Zyy-1 = span{L()Ly(y)h

Zum= {0}, YO=m=N-2.

Hence let My, be a supplement of Z, in 5, N L}{(D), ie.,
Mym @ Zy,, = S, N L. Then by the construction of My,
the new approximation,

(VuN,ms Vv) - (v "V, pN,m) = (fy v)a
(V ) uN.m: Q) = 05 Vq E MN‘ms

Vv e XN;
(3.3)

admits a unique solution in Xy X My,,. Or equivalently, there
exists By,, = 0 such that (see, for instance, [4, 5]}

) (V-v,q)
inf supr———m—— = By,
9=My VE’R “U”Hlm)”qf”ﬂm §

EX)
By 1s usually referred to as Babuska-Brezzi's inf-sup constant
for the system (3.3). The behavior of the inf-sup constant 3y,
is important not only because (cf. [5]) the system (3.3) admits
a unique solution if and only if 8y, > 0, but aiso because (i)
the error estimate for the pressure approximation in (3.3) is
optimal if and only if .. is independent of (¥, m) and other-
wise there is a loss of accuracy of the order 85, for the pressure
approximation; {il) the number of iterations required in the
conjugate gradient Uzawa method is proportional to 8By, (see
below for more details).

There have been many efforts for determining numericaily
and theoretically the inf-sup constant (see, for instance, [3,
10, 6-8]). Most of the theoretical results in these references
provided only lower bounds for the inf-sup constants, and these
lower bounds usually more or less under-estimated the inf-sup
constants. However, the author was informed, when this work
was complete, by S. Jensen that recently Maday er al. [9]
succeeded in proving that Byy-2 ~ CNY™42 On the other hand,

to the author’s knowledge, the available numerical results are
limited to relatively small N's (N £ 20), which are far from
reaching the asymptotic range of the inf-sup constants, We
shall try to compute numerically below the inf-sup constants
Bu, for a range of (N,m) large enough to exhibit clearly the
asymptotic decay rate of Sy,,.

It is certainly very difficult to compute By, directly from
the definition (3.4). To facilitate the task, we shall use instead
a different interpretation of 8, By using the Legendre polyno-
mials {L(x)Ly):i, j = 0, 1, ..., m} as base functions
for §, and the combinations of Legendre polynomials
{¢:i(x);(y):i, j = 0,1, .., N — 2} as base functions for
Xy, we can rewrite (3.2) in the matrix form

) — F.
AWy T BimFym = Iy

Bn’.m,wN.m = U, (35)
where wy, , and ry , denote the vectors formed by the coefficients
of the aforementioned base expansions of respectively, uy , and
D Jw is the vector formed by {f;:4, 7 = 0,1, .., N — 2} with
f}{,- = (f, ¢;(x)h;(y)); Anis the discrete Laplacian operator; By
is the discrete negative divergence operator; and its franspose,
B}, is the discrete gradient operator.

It is obvious that Ay is positive definite and, hence, invertible.
Therefore we can eliminate wy , from (3.5) to obtain an equation
only for ry,,

Dy tun = BunAi'BRn)um = BunAs'fu.  (3.6)

Remark 3. The generalized Stokes system, obtained by re-
placing —A by the Helmholtz operator e — A, can be treated
similarly. We only have to replace Ay in (3.3) and A5 in (3.6)
by respectively the discrete Helmholtz operator and its inverse.

The matrix Dy, is often referred as the discretization of the
Uzawa operator —V + (—AY ™' V, since the Uzawa algorithm
introduced in [1] can be interpreted as a gradient method applied
to the system (3.6).

Clearly Dy, is symmetric and at least semi-positive definite.
Furthermore, we have the following resulis for Dy, (see, for
instance, Chapter 2 in [5]).

LemMma 2. Let AN (resp. A™ ) be the smallest positive
(resp. largest) eigenvalue of Dy,,. Then
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TABLE I

The Inverse of AU™, Le., cond(Dy,.}

\ 8 16 3 64 128 256 512 N i
N 105.1 416.8 1662 6642 26561 — — ~1.62N°
N-1 6.204 8.760 13.49 2239 3954 7201 1424 ~027N
N-2 4,608 5.444 7.229 11.36 19.79 16.52 60.57 ~0.13N
N-3 4548 5210 6.803 10.91 19.36 36.08 £9.06 ~0.13N
A%?) = ]s I\ghm) = B%’.m; CDﬂd(DN,mk3) i Cond(DN‘m—Z);
cond{Dy,,—) = 2 cond(Dy,_.), for N>32

and dim(Zy ) equals to the number of zero eigenvalues of Dy .

Thus we can obtain Sy, by computing A%™ of Dy,,. How-
ever, due Lo the presence of A;! in the definition of Dy, one
cannot expect Dy, to be a sparse matrix. Hence one must try
1o solve the system {3.6) or to compute its eigenvalues without
forming explicitly the matrix Dy . Note that the matrix-vector
product Dy, ., can be easily performed in O(N*? log, N} opera-
tions, thanks to the fast direct Poisson solver developed above,
Therefore the system (3.6} can be solved in particular by the
conjugate gradient method, and thanks to Lemma 2, the number
of iterations required in the conjugate gradient method scales
as (A~ = 3.1, Hence the efficiency of this iterative
Stokes solver (note that once the solution 7y, of (3.6) is known,
we can obtain wy,, from (3.3) by solving a Poisson equation)
depends greatly on the behavior of By,., or equivalently,
Adem)

To compute A%™ from (3.6} without forming explicitly the
matrix Dy, one can of course employ the power method, as
is used in [8]. However, the convergence rate is usually very
siow and, hence, prohibits the computation for large (N, m).
A better strategy is to use the block-Lanczos algorithm for
computing a few extreme eigenvalues of a large symmetric
system. The algorithm usually yields the desired results with
a relatively small number of matrix-vector products. The algo-
rithm was particularly implemented by D. Scott in a public
domain package LASO (available via netlib). In Table II, we
present the condition numbers of Dy, (denoted by cond(Dy,,)}
withm = N, N — 1|, N — 2, N — 3 as computed by using the
subroutine dnlaso.f in LASO.

We note that for m = N, the computational asymptotic rate

1 .
Bux = m is very accurate for all N reported. Tt also

suggests that the pair X, X Sy is not suitable for use with the
iterative Uzawa scheme, since cond(Dyy) ~ 1.62N7 is too
large. On the other hand, for m = N — 1, the asymptotic rates
for By, are ali of order N =", Furthermore, the inf-sup constants
By (for m <= N — 1) do not enter the asymptotic range until
N ~ 512; for small N, their decay rates are significantly slower,
as noted also in [8]. One should alsc note that

This suggests that this is of no interest to use m =< N — 3 and
that m = N — 2 is probably the best choice if one uses the
conjugate gradient Uzawa scheme to solve the discrete system
(3.3). But when a small N is used, such as in the spectral element
applications, the case m = N — 1 is also worth considering since
it leads to a relatively more accurate pressure approximation.

We finally note that taking into account the complexity of
the fast Poisson solver and the asymptotic growth rates of
855, the conjugate gradient Uzawa scheme for the discrete
Stokes system with m = N — 1 is of complexity O(N*" log,N).
We mention that often the number of iterations required in the
conjugate gradient Uzawa scheme grows significantly slower
than 85!,. In Table [T, we have tabulated the number of conju-
gate gradient iterations required for seven-digit accuracy for
two concrete examples in the case m = N — 2:

Ex. 1. f(x, y) is chosen so that the exact solution P(x, y) =
cos(mx) cos(wy);
Ex. 2. f{x, v) is a uniformly distributed random function.

In both cases, the starting guess was taken to be zero.

Remark 4. The algorithm in this section can be naturally
extended to the three-dimensional case. However, the decay
rate of the inf-sup constant in the 3D case is significantly
faster than in the 2D case. To iilustrate the situation, we have
computed cond(Dy,) (see Table IV) for the more interesting
case, m = N — 2. Although we were not able to reach the
asymptotic range because of the limitation of the computing

TABLE 111

Number of Conjugate Gradient Tterations

N & 16 32 64 128 256
Ex. 1 9 10, 12 12 13 15
Ex. 2 13 13 15 15 16 17
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TABLE IV
cond(Dy--) in 3D Case

N R 16 32 40 64 30 128
cond{D pn_s) 11.34 22.01 52.64 72.41 149.2 208.4 469.1
REFERENCES

resource, we observe that for N increases from 8 up to 128,
cond{Dyy-;) is steadily growing toward the theoretical asymp-
totic rate Q(NV?), This implies that the number of conjugate
gradient iterations required grows like (V). Hence, this itera-
tive Stokes solver in the 3D case is not as attractive as in the
2D case, especially when a large N has to be used, although it
is probably still the most viable technique at the present time
for solving the 3D Stokes system with a spectral discretization.

CONCLUDING REMARKS

We have presented in this paper a fast Poisson solver and
an iterative Stokes solver, based on the Legendre—Galerkin
approximations, whose complexities are respectively Q(N* log,
N} and ON* log, N) in a two-dimensional rectangu-
lar domain, Taking into account the spectral accuracy of the
Legendre—Galerkin approximations, we conclude that these
algorithms are very valuable and competitive for the speci-
fied problems.

We have also computed numerically the inf-sup constants
of a sequence of discretized Stokes sysiems for a large range
of (N, m). The results exhibit not only the gquantitative but also
the qualitative asymptotic behavior of the inf-sup constants.
The results may serve, in particular, as a reference for users of
spectral methods to choose an appropriate patr of discretization
spaces for the velocity and the pressure in the Stokes problem.
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